Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

نویسندگان

  • Drew P Kise
  • Donny Magana
  • Michael J Reddish
  • R Brian Dyer
چکیده

We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples.

Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing met...

متن کامل

Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.

To achieve high mixing efficiency in microfluidic devices, complex designs are often required. Microfluidic devices have been evaluated with light and confocal microscopy, but fluid-flow characteristics at different depths are difficult to separate from the en face images produced. By using optical coherence tomography (OCT), an imaging modality capable of imaging 3D microstructures at micromet...

متن کامل

Microfluidic T-Form Mixer Utilizing Pressure Disturbances

A simple solution to mixing problems in micro fluidic systems was presented in this paper. A T-form microfluidic mixer was designed and tested utilizing pressure disturbances. The performance of the mixer was studied through both numerical simulation and experimentation. Based on results of numerical simulation, more than 75% mixing can be finished within a mixing distance of less than 1.5mm fr...

متن کامل

Numerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method

Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...

متن کامل

Characterization of continuous convective powder mixing processes

The Process Analytical Technology (PAT) initiative has encouraged the development of new technology to improve upon the current manufacturing paradigm. As a result substantial attention has recently focused on continuous processing due to the ability to control disturbances online, avoiding the loss of processing materials and enabling effective process scale-up. In this paper, a pharmaceutical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2014